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Brahma is required for cell cycle arrest and late
muscle gene expression during skeletal myogenesis
Sonia Albini1,†, Paula Coutinho Toto1,†, Alessandra Dall’Agnese1, Barbora Malecova1, Carlo Cenciarelli2,

Armando Felsani3, Maurizia Caruso3, Scott J Bultman4 & Pier Lorenzo Puri1,5,*

Abstract

Although the two catalytic subunits of the SWI/SNF chromatin-
remodeling complex—Brahma (Brm) and Brg1—are almost invari-
ably co-expressed, their mutually exclusive incorporation into
distinct SWI/SNF complexes predicts that Brg1- and Brm-based
SWI/SNF complexes execute specific functions. Here, we show that
Brg1 and Brm have distinct functions at discrete stages of muscle
differentiation. While Brg1 is required for the activation of muscle
gene transcription at early stages of differentiation, Brm is
required for Ccnd1 repression and cell cycle arrest prior to the acti-
vation of muscle genes. Ccnd1 knockdown rescues the ability to
exit the cell cycle in Brm-deficient myoblasts, but does not recover
terminal differentiation, revealing a previously unrecognized role
of Brm in the activation of late muscle gene expression indepen-
dent from the control of cell cycle. Consistently, Brm null mice
displayed impaired muscle regeneration after injury, with aberrant
proliferation of satellite cells and delayed formation of new myo-
fibers. These data reveal stage-specific roles of Brm during skeletal
myogenesis, via formation of repressive and activatory SWI/SNF
complexes.
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Introduction

Developmental and adult skeletal myogenesis are activated by

the basic helix-loop-helix (bHLH) family of myogenic regulatory

factors (MRFs), MyoD, Myf5, MRF4, and myogenin, which share

the ability to promote transcription from E-box sequences (CAN-

NTG) found in the regulatory region of many muscle-specific

genes [1–3]. MRF competence to promote transcription of muscle

genes relies on the interaction with the SWI/SNF chromatin-

remodeling complex [4,5]. SWI/SNF complex appears to mediate

the unique ability of MyoD and Myf5 to remodel the chromatin

and activate transcription at previously silent muscle loci [6,7],

but is also required for the maintenance of muscle gene expres-

sion at later stages of skeletal myogenesis [8]. SWI/SNF

complexes are composed of two mutually exclusive enzymatic

subunits (the ATPases Brahma (Brm) and Brm-related gene 1

(Brg1)) and a number of structural subunits, collectively referred

to as Brg1/Brm-associated factors (BAFs) [9,10]. Because of the

variable, cell type-specific assembly of distinct subunits and their

alternative variants, SWI/SNF complexes are heterogeneous in

their composition and function [11–13]. This structural and func-

tional heterogeneity suggests that distinct SWI/SNF complexes

might simultaneously exist in the same cell type to perform

specialized functions depending on the cell context and differen-

tiation stage. One major determinant of SWI/SNF variability is

conferred by the mutually exclusive incorporation of the catalytic

ATPase, Brg1 and Brm. Several studies have shown the impor-

tance of Brg1- and Brm-based complexes in the control of gene

expression, cell proliferation, differentiation and transformation

[14,15]. Both Brg1 and Brm are also known to interact with and

stimulate the activity of several transcription factors, including

the glucocorticoid receptor and C/EBP [16,17]. Other studies

have suggested a functional redundancy between Brm and Brg1

[18–21].

Collectively, the information reported above seems in apparent

conflict with the mutually exclusive presence of Brg1 and Brm in

individual SWI/SNF complex and prompted an interest toward

elucidating specific functions of these two proteins in various

cellular processes. Previous attempts to address the individual role

of Brg1 and Brm during skeletal myogenesis, by using dominant

negative mutants, revealed an essential role for both proteins in

the activation of the myogenic program [6,22,23]. However, the

conclusions from these studies were limited by the use of an

experimental system in which the myogenic program was activated
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in fibroblasts by tetracycline-inducible MyoD, and Brg1 and Brm

were functionally inactivated by enzymatically defective dominant

negative mutants [22] or neutralizing antibodies [23]. Moreover,

while these seminal studies clearly indicated the importance of

both Brg1 and Brm in the activation of the myogenic program, the

individual role of each subunit in the control of discrete transcrip-

tional networks could not be established. More recently,

Imbalzano’s laboratory has exploited RNAi to knock down the

levels of Brg1, showing that Brg1 controls muscle genes and

muscle-specific microRNAs (myomiRs) expression in skeletal

muscle cells [24]. Likewise, we have shown by RNAi-mediated

knockdown the essential role of Brg1/BAF60C-based SWI/SNF

complex in the activation of the myogenic program in C2C12

muscle cells [25]. Still, the specific function of Brm in skeletal

myogenesis remains obscure to date.

Gene knockout studies in mice have demonstrated that inactivat-

ing mutations in Brg1 are embryonic lethal, whereas Brm-

inactivated mice are viable and fertile, suggesting that Brg1 may

functionally replace Brm within the SWI/SNF complexes during

development [26–28]. However, Brm�/� mice show increased body

weight and alteration of cellular growth control [26,28], indicating

the requirement of Brm in the control of tissue growth, differentia-

tion, and homeostasis. Despite the high degree of homology

between the two subunits and their partial overlapping role, differ-

ent expression profiles were reported by Muchardt et al [29] show-

ing that Brg1 is expressed constitutively, whereas Brm levels

fluctuate with increased expression in G0-arrested cells and in cells

induced to differentiate; furthermore, the expression of Brm, but

not Brg1, was negatively regulated upon mitogenic stimulation as

well as in ras-transformed cells [29]. Moreover, Brm and Brg1

appear to direct distinct cellular pathways, by recruitment to

specific promoters through preferential interaction with certain clas-

ses of transcription factors. Brg1 binds to zinc finger protein

through a unique N-terminal domain not present in Brm, while Brm

interacts with two ankyrin-repeats proteins that are crucial in the

Notch signal transduction [30]. More recently, studies have investi-

gated the individual roles of Brg1 and Brm in various cellular

processes, revealing again individual, cooperating, and redundant

activities of these two proteins depending on the cell type and the

specific context [18–21].

In the present study, we have used an integrated genome wide

analysis of gene expression and gene knockdown with in vitro and

in vivo studies to systematically address the role of Brg1 and Brm

during skeletal myogenesis.

Results

Differential expression profiles and function of Brg1 and Brm
during C2C12 skeletal muscle differentiation

We compared the expression levels of Brg1 and Brm in C2C12

myoblasts during proliferation (growth medium, GM) and differ-

entiation into myotubes (differentiation medium, DM). This tran-

sition is well illustrated by the relative expression levels of cyclin

D1 (detected in proliferating myoblasts and downregulated during

differentiation) and myosin heavy chain (MyHC), which is specifi-

cally induced during C2C12 differentiation (Fig 1). While the

same levels of expression of Brg1 protein were detected in

proliferating myoblasts and during the whole differentiation

process, Brm protein and RNA levels were progressively upregu-

lated during C2C12 differentiation (Fig 1A and C). Consistently,

immunofluorescence analysis revealed nuclear expression of Brm

detectable in few undifferentiated myoblasts, while a higher signal

was detected in all the nuclei of MyHC-expressing myotubes

(Fig 1B). By contrast, Brg1 showed a uniform nuclear expression

in both undifferentiated myoblasts and differentiated myotubes

(Fig 1B). These data indicate that Brg1 and Brm are differentially

regulated during skeletal muscle differentiation.

To gain further insight into the specific role of Brg1 and Brm

at discrete stages of skeletal myogenesis, we individually down-

regulated their expression by small interfering RNA (siRNA)-

mediated knockdown in undifferentiated myoblasts, followed by

a phenotypic analysis of the derived populations of myoblasts.

Knockdown of each protein resulted in a uniform and persistent

depletion of Brg1 or Brm in C2C12 myoblasts, with at least 70%

reduction in both transcripts and protein levels after 48 h of DM,

as compared to scramble (siScr) controls (Fig 1C and D; see also

Fig 3C). Interestingly, two distinct phenotypes were observed in

Brm- or Brg1-downregulated muscle cells, as compared to the

control cells. Both phase contrast and immunofluorescence

images (Fig 1E) documented that while Brg1-depleted cultures

showed a complete absence of myotubes, Brm-depleted cells

displayed a severe impairment in the formation of myotubes,

which appeared reduced in number and size, with a lower fusion

index as compared to control (siScr) cells (Fig 1E and F). During

these experiments, we consistently observed a higher number of

myoblasts in siBrm-treated myoblasts following induction of

differentiation, as compared to siBrg1 and control samples,

suggesting an increased proliferative activity possibly derived

from an impaired cell cycle arrest that typically precedes the acti-

vation of the differentiation program upon mitogen withdrawal.

Indeed, EdU incorporation experiments revealed that the large

majority (~80%) of siBrm myoblasts continued to proliferate after

48 h, as compared to control samples and siBrg1 myoblasts

(Fig 2A and B, top panel). The effect of Brm on cell proliferation

was further monitored by manual cell counting at several time

points after differentiation (Fig 2B, middle panel) and by FACS-

assisted count of EdU-positive cells (Fig 2B, bottom panel). All

these analyses demonstrated that siBrm C2C12 cells retained

proliferative activity in DM, while siScr and siBrg1 C2C12 cells

ceased dividing (Fig 2B). Of note, a small fraction of siBrm

myoblasts could differentiate, but failed to form multinucleated

myotubes with the size that is typically observed in control cells

(Fig 2A). This evidence indicates the presence of two populations

in siBrm myoblasts exposed to differentiation conditions: one

large population that escaped the differentiation-induced G0/G1

cell cycle arrest and continued to proliferate instead of differenti-

ating, and another, smaller population, which could exit the cell

cycle, but failed to complete the differentiation process. While

Brm was not detectable by immunofluorescence in the sporadic

siBrm MyHC-positive cells (data not shown), it remains formally

possible that the latter population derives from cells in which

Brm was not efficiently depleted. Alternatively, these cells might

have initiated the differentiation program prior to the down-

regulation of Brm or a redundant, Brm-independent, cell cycle
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arrest can be activated in a small fraction of cultured myoblasts.

By contrast, siBrg1 myoblasts uniformly failed to differentiate,

despite their ability to withdraw from cell cycle arrest in

response to differentiation conditions, as no EdU-positive cells

were detected when cells were incubated in DM (Fig 2A and B).

Collectively, these data indicate that Brg1 and Brm perform

essential functions during skeletal myogenesis, likely through

separable mechanisms.

Brg1 and Brm regulate distinct and overlapping clusters of genes
during C2C12 myoblast differentiation

To further elucidate the individual roles of Brm and Brg1 during

skeletal myogenesis, we performed a gene expression microarray in

siBrg1 and siBrm myoblasts (with siScr as control) at two sequential

stages of differentiation—18 and 48 h after incubation in DM—that

were selected to reveal the relative impact of Brg1 or Brm on gene

A B

C

D

F

E

Figure 1. Brm and Brg1 show specific profiles of expression and activities during skeletal muscle differentiation.

A Time course of protein expression during terminal differentiation of C2C12 myoblasts representative of three independent experiments. Myoblasts were cultured in
growth medium (GM) until they reached confluence, and then shifted to differentiate in differentiation medium (DM) for 48 h. Cellular extracts were analyzed by
Western blot with antibodies against BRG1, Brm, myosin heavy chain (MyHC), and cyclin D1. Cdk4 probing was used to check for equal loading of the samples.

B Immunofluorescence analysis of Brm and Brg1 expression in C2C12 cells cultured in GM or DM conditions. Scale bar, 50 lm.
C Efficiency of BRM and BRG1 knockdown at 48 h post-transfection performed in C2C12 cells using siRNAs (control interference is a scrambled sequence and referred

as siScr) was monitored by qRT–PCR. Data are presented as average � SEM (n > 3).
D Immunofluorescence for Brm or Brg1 performed in proliferating myoblasts upon siRNA against Brg1 (siBrg1), Brm (siBrm) or scrambled (siScr) to check for efficient

depletion of the proteins. Scale bar, 50 lm.
E Brightfield images and MyHC staining were performed at various time points of differentiation in C2C12 cells in which siRNAs were delivered in GM as depicted in

the scheme above. Scale bar, 50 lm.
F Quantification of fusion index of three independent experiments calculated as percentage of nuclei within MyHC-expressing myotubes. Data are presented as

average � SEM (n > 3). *P < 0.05; ***P < 0.001 (unpaired Student’s t-test).
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expression at early and late stages of muscle differentiation, respec-

tively. The complete list of modulated genes is available and can be

accessed through GEO Series accession number GSE44993. (http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44993). A list

of the up- and downregulated genes is also shown in Table EV1.

Interestingly, the gene expression profiles of C2C12 cells depleted

of Brm or Brg1 showed distinct and overlapping clusters of up- and

downregulated genes (Fig 2C and D). The largest fraction of down-

regulated genes was observed in siBrg1 C2C12 cells (Fig 2D) and

was enriched in genes implicated in skeletal muscle differentiation,

and other general aspect of cellular differentiation, such as tissue

morphology and development, cell signaling, cell cycle, and cell

death (Fig EV1). This is consistent with an essential role of Brg1 in

the activation of early genes that promote skeletal muscle differenti-

ation such as myogenin, as predicted by the phenotype of siBrg1

myoblasts (Figs 1 and 3C) and previous studies [8,22,25]. Conver-

sely, downregulated genes in siBrm1 myoblasts showed only a

modest enrichment in a subset of skeletal muscle late genes, which

were also found downregulated in siBrg1 myoblasts (overlapping

cluster of genes), indicating a possible cooperation of Brg1 and Brm

in the activation of a cluster of common downstream muscle differ-

entiation genes (Figs 2D, EV1 and EV2). Among the upregulated

genes, we noted enrichment in genes belonging to the cell cycle and

proliferation networks in both siBrg1 and siBrm myoblasts

A

C D

B

Figure 2. Downregulation of Brm or Brg1 leads to specific alterations of cell cycle and differentiation of C2C12 myoblasts.

A, B C2C12 were depleted for Brm (siBrm), Brg1 (siBrg1), or a scrambled (siScr) sequence by small interfering RNA (siRNA) during proliferation (GM), and samples were
analyzed at different time points during differentiation (DM 18 h and DM 48 h). Double EdU/MyHC staining was performed after incubation of EdU 12 h before
fixing the cells (A). Scale bar, 50 lm. Percentage of EdU-positive cells was calculated counting 10 fields of EdU-positive cells (B, top graph). Proliferation analysis
was performed by counting the number/field of siRNA-treated C2C12 at the time point indicated (B, middle graph) and by flow cytometry by BrdU incorporation
(B, bottom graph) as percentage of BrdU+ cells. Data are presented as average � SEM (n = 3).

C Heat map showing the expression profiles of transcripts in siRNA-treated C2C12 collected at 18 h and 48 h of differentiation.
D Venn diagram showing overlap between genes downregulated in C2C12 depleted for Brm and Brg1 at early (18 h) and late (48 h) differentiation time points. The

percentage of skeletal muscle genes annotated in each category is indicated.
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(Fig EV1). These genes are likely to be repressed, either directly or

indirectly, through a Brg1- and/or Brm-mediated mechanism. Inter-

estingly, at early differentiation stages (DM 18 h), the timing when

myoblasts exit the cell cycle prior to differentiating, we observed

upregulation of cell cycle-related genes (Figf, Vegfc, Ccng, Ccnd1)

only in siBrm myoblasts (Figs 2D and EV1). Among these genes, we

annotated one key activator of cell cycle progression—the cyclin D1

gene Ccnd1—that was specifically upregulated in siBrm myoblasts.

At 48 h of DM, cyclin D1 continued to be upregulated in siBrm

C2C12 cells, although it was also annotated among the upregulated

genes in siBrg1 C2C12 cells (http://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE44993). By using qRT–PCR, we confirmed

the presence of elevated levels of cyclin D1 transcripts in siBrm

C2C12 cells, during proliferation (GM) and differentiation conditions

(Fig EV2). The elevated mRNA level of cyclin D1 was also

confirmed in Brm�/� MEFs compared to WT MEFs during a

myogenic conversion assay at several time points of differentiation

(Fig EV4E). By contrast, qRT–PCR analysis confirmed that the early

muscle differentiation gene myogenin was downregulated only in

siBrg1 C2C12 cells, while the expression of four commonly down-

regulated genes (EzH1, Actn3, MEF2c, and Actc1) was reduced in

both siBrg1 and siBrm cells (Fig EV2).

Brm controls muscle differentiation-associated cell cycle arrest
by repressing Ccnd1 expression

Previous works established a critical, unique role of cyclin D1 in the

regulation of myoblasts proliferation and inhibition of differentiation

[31–35], indicating that Ccnd1 repression is important for cell cycle

exit and activation of the myogenic program at early stages of

myoblast differentiation. Given the proliferative phenotype observed

only in siBrm myoblasts, we decided to focus on Ccnd1, as a poten-

tial Brm-repressed gene that mediates the proliferative phenotype of

siBrm myoblasts.

We evaluated the expression of cyclin D1 in siBrm and siBrg1

C2C12, as compared to siScr C2C12 cells. Immunofluorescence and

Western blot analysis showed a large proportion of siBrm myoblasts

continue to express cyclin D1, as a reflection of their failure to with-

draw from the cell cycle (Fig 3A–C). By contrast, cyclin D1 was

downregulated in siBrg1 cells placed in DM (Fig 3A–C).

We further investigated the specific role of Brm vs. Brg1 in the

repression of Ccnd1 transcription by using chromatin immuno-

precipitation (ChIP) experiments. This analysis demonstrated that

Brm, and not Brg1, bound the regulatory elements of Ccnd1 with an

increased chromatin binding along with myoblast differentiation

observed at �591 bp from the transcription start sites that coincided

with an accumulation of the repressive histone mark H3K27 tri-

methylation (H3K27me3) (Fig 3D), which has been previously

detected by ChIP-seq studies [36]. This evidence indicates that Brm

directly mediates Ccnd1 repression at the early onset of muscle

differentiation.

To establish a causal relationship between Ccnd1 expression, fail-

ure to arrest the cell cycle and defective formation of terminally

differentiated myotubes in siBrm myoblasts, we downregulated

Ccnd1 by siRNA and evaluated the effect on cell cycle arrest (as

assessed by EdU incorporation) and on the expression of markers of

terminal differentiation (indicated by expression of myogenin and

MyHC) in siBrm, siBrg1, and siScr myoblasts (Fig 4A). siRNA

efficiently reduced cyclin D1 transcripts (Fig 4C), leading to uniform

depletion of cyclin D1 protein in C2C12 at all experimental points

(Fig EV3), and effectively restored the ability of siBrm myoblasts to

arrest the cell cycle in response to differentiation signals (DM)

(Fig 4B, compare right and left panels, and Fig 4D). Interestingly,

the recovery of cell cycle arrest in siBrm myoblasts was not suffi-

cient to resume the expression of late muscle differentiation

proteins, such as MyHC (Fig 4B (right panel), D and E). No effect

was observed on the cell cycle profile and expression of differentia-

tion markers in siBrg1 and siScr myoblasts that were depleted of

Ccnd1 (Fig 4B–E). These data support the essential role of Ccnd1

repression in Brm-mediated arrest of cell cycle during muscle differ-

entiation. However, the failure to complete the differentiation

program of Ccnd1-depleted siBrm myoblasts indicates that cell cycle

arrest and terminal differentiation are dissociated in siBrm

myoblasts and suggests an additional role of Brm in the activation

of muscle gene expression that is independent of its ability to arrest

the cell cycle.

Brm but not Brg1 is required for the completion of
muscle differentiation

The lack of multinucleated myotubes in siBrm cells upon down-

regulation of Ccnd1 indicates that Brm might regulate essential and

independent sequential steps of skeletal myogenesis. Thus, we

hypothesized that after inducing G0/G1 arrest by Ccnd1 repression,

Brm could also play an essential role in the activation of late muscle

genes, as also suggested by the microarray analysis of siBrm C2C12

myoblasts (Fig 2).

We addressed this issue by first investigating the effect of Brm or

Brg1 knockdown at different stages of myogenesis, either during

myoblast proliferation or soon after induction of differentiation.

Toward this end, we delivered siRNAs to myoblasts either in GM or

after 6 h from DM incubation (see scheme in Fig 5A) in order to

achieve maximal protein depletion within the first 12–18 h—a

timing in which the large majority of the cells have already exited

the cell cycle and do not incorporate EdU. Interestingly, while Brm

knockdown inhibited the formation of multinucleated myotubes,

regardless of the timing of downregulation, siRNA-mediated deple-

tion of Brg1 delivered to myoblasts after 6 h in DM did not impair

the formation of terminally differentiated myotubes (Fig 5A and B),

at variance with the inhibition of differentiation when Brg1 was

downregulated in GM. This evidence suggests that Brg1 and Brm

exert different functions in differentiating muscle cells, with Brg1

being required for the activation of early muscle genes, yet dispens-

able for the completion of later events during the formation of multi-

nucleated myotubes. By contrast, Brm appears to be essential for

late-stage events of skeletal myogenesis.

Previous studies showed that Brg1 is required for the activation of

myogenin expression during skeletal myogenesis [6,22,25]. Genetic

and molecular studies have established that myogenin expression at

early stages of skeletal myogenesis establishes a key restriction point

for the activation of the differentiation program in skeletal myoblasts

[37–39]. Once expressed, myogenin promotes late muscle gene

expression in collaboration with Mef2D [40], pRb [41–43], and other

transcription factors [44,45]. We therefore tested whether ectopic

expression of myogenin could override the requirement for Brg1 or

Brm during muscle differentiation. To this purpose, we transfected a
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myogenin expression vector to cells that had been previously

depleted of Brm or Brg1 by siRNA in GM and compared to a control

vector (see scheme in Fig 5C). Indeed, myogenin overexpression

rescued the formation of myotubes from siBrg1 myoblasts, but failed

to do so in siBrm myoblasts (Fig 5C (right panel), F and G), which

exhibited a phenotype similar to control (empty vector transfected)

myoblasts (compare left and right panels of Fig 5C and D–G).

Overall, these findings support the conclusion that Brg1 is required

for direct activation of early muscle gene transcription at the

myogenin step, while late completion of myogenesis appears to

require Brm. These data also suggest that the downregulation of late

muscle genes in siBrg1 C2C12 cells could be the result of an indirect

effect on myogenin downstream target genes.

We also investigated the role of Brm on late muscle gene activa-

tion in independent experiments, by using Brm-deficient murine

embryonic fibroblasts (MEFs) and satellite cells. Brm null MEFs

were compared to their wild-type counterpart for activation of the

myogenic program upon ectopic expression of MyoD (Fig EV4).

Activation of a MyoD-responsive luciferase reporter (4RE-luc, in

which luciferase is driven by multiple MyoD-bound Eboxes) was

largely compromised in Brm null MEFs, as compared to WT MEFs

(Fig EV4A). Moreover, MyoD promoted myogenic conversion of

WT MEFs, but failed to convert Brm null MEFs (Fig EV4B), and

re-introduction of Brm restored MyoD ability to activate endogenous

muscle genes in Brm null MEFs (Fig EV4C). Likewise, primary satel-

lite cells isolated from Brm null mice failed to form differentiated

myotubes, as compared to satellite cells from WT mice (Fig EV4D;

see also Fig EV5), but re-introduction of Brm restored their differen-

tiation ability (Fig EV4D).

Brm null mice exhibit delayed muscle regeneration and Brm null
satellite cells display intrinsic deregulation of cell cycle and
impaired differentiation

We next assessed the impact of Brm on skeletal myogenesis in vivo,

by using Brm null mice [26,28]. To evaluate the regeneration

potential of Brm null muscles, we injured the tibialis anterior (TA)

muscles of 2.5-month-old wild-type (WT) and Brm null mice, and

compared their repair ability (Fig 6A), by using multiple approaches.

Although these mice develop normally and survive as long as their

wild-type counterparts, they display increased total weight and

reduced size of unperturbed muscles, as shown by the smaller

A

B

C

D

Figure 3. Brm controls muscle differentiation-associated cell cycle arrest by repressing cyclin D1 expression.

A, B Immunofluorescence analysis of cyclin D1 expression in C2C12 cells depleted for Brm (siBrm) or Brg1 (siBrg1) in DM 48 h (A) and relative quantification reporting
the percentage (%) of cyclin D1-positive cells (B). Scale bar, 50 lm. Data are presented as average � SEM (n > 3). P-value was calculated using unpaired Student’s
t-test, ***P < 0.001. Experiments were performed at least three times.

C Western blot analysis performed in siBrm, siBrg1, and siScr C2C12 cells cultured in GM or DM, using antibodies against Brm, Brg1, cyclin D1, myogenin, and Actn3.
a-actin was used as a loading control. Experiments were performed at least three times.

D Recruitment of Brg1 and Brm and analysis of H3K27me3 on a promoter sequence of the Ccnd1 gene in GM and DM. Arrows indicate the regions amplified by the
primers used. Protein recruitment is expressed as relative enrichment of each factor compared to IgG after normalization for total input control (n = 3, error bars
represent SEM). P-value was calculated using unpaired Student’s t-test, *P < 0.05; ***P < 0.001.
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cross-sectional area (CSA) of myofibers, when compared to their

wild-type counterpart (Fig 6B–D). This phenotype suggests that Brm

deficiency can compromise postnatal myogenesis and prompted an

interest in evaluating the regeneration potential of Brm null muscles.

Morphological analysis of myofibers at 7 days post-injury

showed a comparable number of centronucleated fibers in WT and

Brm null mice (Fig 6B), indicating that the extent of the injury was

the same; however, a clear reduction in fiber CSA was observed in

tibialis anterior muscle, as well as in gastrocnemius muscle (data

not shown) of Brm null mice, as compared toWTmuscles (Fig 6B–D),

indicating an impaired regeneration ability of Brm null muscles.

Muscle repair is typically preceded by myofiber degeneration and

inflammatory infiltration, followed by satellite cell-mediated forma-

tion of regenerating fibers that can be distinguished from pre-

existing myofibers by virtue of their staining for embryonic MyHC

(eMyHC). eMyHC expression typically disappears upon fiber

maturation, between days 6 and 8 post-injury. Indeed, at 7 days

post-injury, WT muscles showed morphological evidence of muscle

repair, visible by H&E staining (Fig 6B and D), which coincided

with absence of inflammatory infiltrate, as quantified by

A

B

D EC

Figure 4. Stage-specific requirement of Brg1 or Brm for the activation of the differentiation program in C2C12 myoblasts.

A Schematic representation of the experimental setting, with siRNA delivered to C2C12 cells in GM and EdU pulses in GM or DM 6 h before collecting cells. Cyclin D1
(or control Scr) was downregulated by siRNA in C2C12 cells, which were subsequently interfered for Brm, Brg1, or scrambled sequences (siScr) by small interfering
RNA (siRNA). Cells were then cultured in DM for 48 h.

B Immunofluorescence analysis of EdU incorporation, myogenin and MyHC in C2C12 collected from experimental conditions indicated in (A). Percentages of positive
nuclei or cells are indicated in the top right corner of each panel. Nuclei are counterstained with DAPI. The effect of siBrg1, siBrm, or siScr on EdU incorporation,
myogenin and MyHC expression was evaluated in siScr (left panels) or siCyclinD1 (right panels) C2C12 cells. Scale bar, 50 lm.

C Relative expression levels of Ccnd1 transcripts were monitored by qRT–PCR in siScr, siBrg1, and siBrm C2C12 cells in GM and DM (48 h). Data are presented as
average � SEM (n = 3).

D Quantification of EdU incorporation in nuclei, as percentage of EdU-positive nuclei/total nuclei in randomly selected fields, in siScr, siBrg1, and siBrm C2C12 cells in
GM and DM (48 h), in the presence or absence of siCyclinD1. Data are presented as average � SEM (n > 3). ***P < 0.01 (unpaired Student’s t-test).

E Fusion index was calculated by immunofluorescence staining, as percentage of nuclei within MyHC-expressing myotubes, performed in siScr, siBrg1, and siBrm C2C12
cells cultured in DM (48 h), in the presence or absence of siCyclinD1. Error bars represent average � SEM (n = 3).
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CD45-positive cells (Fig 6B and E) and low number of eMyHC-

positive fibers (Fig 6B and F). Conversely, Brm null muscles

showed morphological evidence of ongoing regeneration, such as

persistent infiltration of CD45-positive cells (Fig 6B and E) and an

abundant number of eMyHC-positive fibers (Fig 6B and F).

These data reveal an impaired repair ability of Brm null muscles

that could be accounted for by the defective myogenic potential due

to the absence of Brm in muscle satellite cells—the cellular effector

of muscle regeneration [46] reviewed by Brack & Rando and Yin

and colleagues [47,48]. However, the widespread gene deficiency of

Brm null mice raises the possibility that the muscle phenotype

detected could be due to a systemic and/or satellite cell extrinsic

effect. To evaluate whether this phenotype was due to a cell

intrinsic defect of Brm null satellite cells, we isolated by FACS

satellite cells from notexin-injured TA muscles of wild-type and Brm

null mice and compared their intrinsic differentiation potential in

culture, upon incubation in differentiation conditions (DM). While

WT satellite cells ceased proliferating (0.24% EdU cells) and formed

multinucleated myotubes with high efficiency (91.87% of MyHC-

positive myotubes), Brm-deficient satellite cells showed compro-

mised differentiation ability, with sporadic and smaller MyHC

myotubes (23.78% of MyHC-positive myotubes) and altered proli-

feration (4.86% of Edu-positive cells) (Fig EV5A–C). As this pheno-

type replicates that observed in siBrm C2C12 myoblasts (Figs 1 and 2),

we used satellite cells to validate by qRT–PCR the changes in

transcriptional output caused by Brm deficiency. We monitored, in

satellite cells from WT and Brm-deficient satellite cells, the expres-

sion of genes that were found up- or downregulated in siBrm C2C12

A

B D E F G

C

Figure 5. Brm is required for both cell cycle arrest before differentiation and activation of late muscle gene expression in C2C12 cells.

A Immunofluorescence performed in differentiated C2C12 treated with siRNAs at different times as indicated on top of each panel. Terminal differentiation was
monitored by using Actn3 (green), and nuclei were visualized by DAPI. Scale bar, 50 lm.

B Quantification of fusion index calculated as percentage of nuclei within Actn3-expressing myotubes.
C Representative immunofluorescence images of siRNA-treated C2C12 cells stained for myogenin and Actn3 at 6 h and 48 h from DM incubation, following

overexpression of Myog or control cDNA, as described in the top scheme. Scale bar, 50 lm.
D–G Quantification of myogenin nuclear staining, as percentage of myogenin-positive nuclei/total nuclei in randomly selected fields, in siBrm, siBrg1, or siScr C2C12

cells overexpressing a control cDNA (D) or myogenin vector (F). Fusion index was calculated by immunofluorescence staining, as percentage of nuclei within Actn3-
expressing myotubes, in siBrm, siBrg1, or siScr C2C12 cDNA cells overexpressing a control cDNA (E) or myogenin vector (G).

Data information: Data are presented as average � SEM (n > 3).
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(Fig EV2). Cyclin D1, which was found upregulated in siBrm C2C12

cultured in DM (Fig 2), as compared to their normal counterpart,

was also upregulated in Brm-deficient satellite cells induced to differ-

entiate, as compared to WT satellite cells (Fig EV5D). Likewise,

genes, such as Actn3, Ezh1, and Mef2C, that were annotated as

downregulated in the microarray from siBrm C2C12 were also down-

regulated in Brm-deficient satellite cells (Figs EV2 and EV5D). As a

control, the expression levels of Ttn, which were not altered in siBrm

C2C12, did not differ in Brm-deficient satellite cells, as compared to

the WT counterpart (Fig EV5D).

We also cultured satellite cells at low confluence to minimize the

effects of cell density that can alter the differentiation ability of

primary satellite cells. Under these conditions, while the majority of

WT satellite cells fused into cyclin D1-negative, MyHC-positive

myotubes, a large proportion of Brm null satellite cells failed to

downregulate cyclin D1 and could not form MyHC-multinucleated

myotubes (Fig EV5E and F). These results demonstrate that Brm

deficiency alters the same pattern of gene expression and biological

properties in both muscle cell lines and primary muscle satellite

cells. Overall, data from cultured Brm-deficient satellite cells

A

C

G H

D E F

B

Figure 6. Impaired muscle regeneration in Brm�/� mice.

A Schematic representation of the experimental setting, showing the time of notexin-mediated muscle injury and tissue analysis (n = 4).
B Regeneration of tibialis anterior (TA) muscles from wild-type (WT) and Brm null (Brm�/�) 2.5-month-old mice was evaluated by morphological criteria

(hematoxylin and eosin (H&E) staining), the presence of regenerating myofibers (laminin/embryonic MyHC) and the presence of inflammatory infiltration (laminin/
CD45) 7 days after notexin injury. Scale bar, 50 lm.

C, D Analysis of cross-sectional area (CSA) of muscles represented as mean of CSA in WT and Brm�/� mice uninjured or post-injury.
E Quantification of % of area occupied by CD45-positive cells in randomly selected fields.
F Quantification of MyHC-positive fibers in randomly selected fields.
G, H In addition to notexin injury, as indicated in (A), WT and Brm�/� mice (2.5 months old) received intraperitoneal injection of EdU. Immunohistochemistry for Pax7,

laminin and EdU were performed in sections from TA muscles to detect proliferating satellite cells (Pax7/EdU double-positive cells within laminin-positive fibers),
and its relative quantification. Scale bar, 50 lm.

Data information: Data are presented as average � SEM (n > 3). P-value was calculated using unpaired Student’s t-test *P < 0.05; **P < 0.01; ***P < 0.001.
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(Fig EV5) and C2C12 cells (Figs 1, 2 and EV5) strongly indicate that

the muscle phenotype observed in Brm-deficient mice is due to

intrinsic defects in cell cycle regulation and activation of late muscle

gene expression.

Finally, we evaluated whether the intrinsic defective myogenic

potential of Brm null satellite cells could be detected in vivo. We

therefore performed Pax7 and EdU staining to determine whether

Brm null satellite cells that failed to differentiate in regenerating

muscles were proliferating. Interestingly, we detected sporadic

Pax7/EdU double-positive satellite cells in unperturbed muscle from

Brm null, while no EdU-positive cells could be detected in WT

unperturbed muscles (Fig 6G). At 7 days following injury by notexin

injection, about 40% of WT Pax7-positive cells incorporated EdU,

with the remaining 60% being a Pax7-positive/EdU-negative popu-

lation that returned to quiescence (Fig 6H). Given that WT muscles

have undergone efficient repair (Fig 6B–F), we presumed that the

large majority of activated satellite cells completed the differentia-

tion program and generated new fibers. However, over 80% of Brm

null Pax7-positive cells continued to incorporate EdU at 7 days post-

injury (Fig 6H). Given the regeneration delay detected in Brm null

muscles (Fig 6B–F), it is likely that the high number of Brm null

Pax7/EdU double-positive cells reflect their intrinsic inability to exit

the cell cycle and efficiently complete the differentiation progress of

muscle progenitors or re-enter quiescence.

Discussion

Brg1 and Brm, the two ATPase subunits of the SWI/SNF complex,

have been often considered functionally redundant; however, the

mutually exclusive incorporation of either subunit in the SWI/SNF

complex indicates that they exert specific functions. This apparent

paradox can be resolved by the co-existence in the same cell of

distinct SWI/SNF complexes with heterogenous composition and in

which alternative incorporation of Brg1 or Brm confers functional

specialization.

In this study, we have used a combination of genetic inactivation

of either Brg1 or Brm, coupled with genome wide transcriptional

analysis, to elucidate the specific function of each protein in the

transcriptional output and biological outcome of muscle progenitors

during in vitro skeletal myogenesis and muscle regeneration in vivo.

This analysis provided new insights into the differential roles of

Brg1 and Brm during the process of skeletal muscle differentiation

and assigned to these proteins stage-specific functions to coordinate

gene expression that has not been appreciated by previous studies.

Our data demonstrate that Brg1 is required for the activation of

muscle gene expression at the early onset of myoblast differentia-

tion, but appears dispensable for later stages. While the essential

role of Brg1 in the activation of early muscle gene expression has

been shown by previous studies [6,22,25], the integrity of the differ-

entiation ability observed in myoblasts in which Brg1 has been

depleted after myogenin expression (Fig 4) was somehow surpris-

ing, as it restricts the function of Brg1 to a discrete boundary of the

differentiation process, and indicates a previously unrecognized role

of Brm in the activation of late muscle genes.

Remarkably, our studies indicated that Brm, but not Brg1, is

required for the completion of late skeletal myogenesis. Indeed,

myotube formation was largely impaired by Brm depletion in

myoblasts that had already initiated the differentiation process, by

either incubation in DM (Fig 5A–C) or forced expression of myoge-

nin (Fig 5C–G). By contrast, depletion of Brg1 at the same timing

did not affect the differentiation process. This unexpected finding

reveals a specific requirement of Brm in the activation of late stages

of skeletal myogenesis that was confirmed in vivo by experiments

showing impaired and delayed muscle regeneration in Brm null

mice (Fig 6) and further supported ex vivo by the intrinsic deficiency

of Brm null satellite cells to form myotubes and activate late muscle

gene expression (Fig EV5). Of note, Brm�/� mice showed a milder

regeneration deficit as compared to the drastic decrease in differenti-

ation observed in C2C12 cells and it is likely that compensatory

mechanisms in vivo account for the milder phenotype. Nonetheless,

the in vivo data support the importance of Brm in regulating cell

cycle and differentiation of satellite cells.

Our data also revealed an essential role for Brm in the cell cycle

arrest that typically occurs in myoblasts at the onset of differentia-

tion and identified cyclin D1 as one key target of Brm-dependent

control of cell cycle in differentiating myoblasts. Interestingly, in

this case, Brm contribution to myogenic differentiation relies on its

ability to directly repress transcription of cyclin D1, a well-known

activator of G1–S phase transition during myoblast proliferation that

has also been recognized as a unique inhibitor of muscle differentia-

tion [31–35]. We found that Brm deficiency in C2C12 myoblasts or

primary satellite cells invariably leads to deregulation of cell cycle

arrest, with an increased number of cells that did not withdraw from

the cell cycle and failed to differentiate into multinucleated myo-

tubes. This phenotype coincided with the upregulation of Ccnd1,

which was independently annotated as an upregulated gene by

microarray analysis in Brm-depleted C2C12 myoblasts (Figs 2, EV1

and EV2). Importantly, Brm, but not Brg1, was found bound to

Ccnd1 promoter by ChIP analysis, with an increased binding during

the differentiation process that correlated with a proportional

enrichment in H3K27 tri-methylation (H3K27me3) (Fig 3)—a

marker of the repressive activity of the Polycomb Repressive

Complex 2 (PRC2) for gene silencing in muscle cells [49,50]. The

coincidental increase in H3K27me3 (Fig 3) suggests that the recruit-

ment of Polycomb group complex (PcG) might contribute to estab-

lish marks of repressive chromatin, in cooperation with Brm-based

SWI/SNF, as proposed by Ho & Crabtree [51]. Interestingly, the

sequence of Ccnd1 promoter that is bound by Brm and is enriched

in H3K27me3 contains both putative YY1 and E2F4/6 binding sites,

which can mediate Brm recruitment, via PcG [52] or pRb [49,53],

respectively.

Collectively, this study shed new light on the distinct roles

exerted by Brg1 and Brm ATPases during skeletal myogenesis. We

show for the first time that Brm plays an essential role at distinct

stages of skeletal muscle differentiation, during myoblast prolifera-

tion by regulating cell cycle arrest, and during terminal differentia-

tion by regulating late muscle gene expression. Consistently, we

show that Brm is required for proper muscle regeneration, as its

absence affects the balance between proliferation, differentiation,

and quiescence of muscle stem cells. As such, this study provides

new insight into the epigenetic control of gene expression during

skeletal myogenesis. As a recent study has shown the essential role

of BAF47/INI1—a constitutive, non-enzymatic SWI/SNF subunit—

in the cell cycle arrest of differentiating C2C12 myoblasts [54],

future studies should determine whether differences in SWI/SNF
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composition can also contribute to mediate the distinct activities of

Brg1 and Brm during skeletal myogenesis.

Materials and Methods

Cell culture and myogenic differentiation

C2C12 myoblasts (ATCC CRL-1772) were cultured in Dulbecco’s

modified Eagle medium (DMEM) supplemented with 20% FBS

(fetal bovine serum) (Hyclone) (Growth Medium [GM]). Terminal

differentiation was induced shifting 80%-confluent myoblasts in

DMEM supplemented with 2% horse serum plus ITS (Sigma)

(Differentiation Medium [DM]).

Brm�/� primary mouse embryo fibroblasts (MEFs) and their

wild-type counterparts were obtained from Drs. M. Yaniv and Chris-

tian Muchardt (Institut Pasteur, Paris). Cells were grown in DMEM

supplemented with 3% FCS (fetal calf serum, Hyclone) + 7% FBS.

In order to induce myogenic differentiation, proliferating cells were

infected with a MyoD-encoding retrovirus (pBABEpuro-MyoD) or

transfected with an expression vector for MyoD (pCDNA3-MyoD)

and after 24–48 h in proliferation medium, differentiation was

induced by replacing cells in differentiation medium for 48 h.

Plasmid constructs

pCDNA3-myogenin expression vector was obtained by sub-cloning

the rat myogenin cDNA into EcoRI site of the pCDNA3 vector.

The retroviruses pBabePuroMyod and pBabePuro were used to

infect proliferating fibroblasts before induction of muscle differentia-

tion. pBS (-)Brm-FLAG was obtained by cloning of Brm-FLAG (pBA-

BE-hBrm-FLAG, Kingston laboratory).

Isolation of satellite cells by FACS from Brm null and WT mice

The isolation of satellite cells was performed as described [55].

Briefly, hind limb muscles were minced and digested in HBSS with

CaCl2 and MgCl2 (Gibco) containing 2 lg/ml Collagenase A

(Roche), 2.4 U/ml Dispase I (Roche), 10 ng/ml DNase I (Roche) for

120 min at 37°C. Cells were blocked with 2.5% goat serum and

stained with primary antibodies (10 ng/ml) CD31-eFluor450 (eBio-

science, 48-0311-80), CD45-eFluor450 (eBioscience, 48-0451-80),

TER-119-eFluor450 (eBioscience, 48-5921-80), CD34-eFluor647 (BD

Biosciences, 347660), Sca-1-FITC (eBioscience, 11-5981-81) and

a7integrin-APC (AbLab) for 30 min on ice. Cells were finally

washed and resuspended in HBSS with CaCl2 and MgCl2 containing

0.2% (w/v) BSA and 1% (v/v) penicillin–streptomycin. Satellite

cells were isolated by flow cytometry analysis and cell sorting,

performed on FACSAria Cell Sorter. Satellite cells were isolated as

Ter119�/CD45�/CD31�/CD34+/a7integrin+/Sca-1� cells.

Cell cycle analysis

For cell cycle analysis, 10 mM BrdU (Sigma) was added to the cells

for 2 h. After BrdU incorporation, cells were harvested and fixed in

ice-cold 70% ethanol. DNA was denatured with HCl 2 N/Triton

20% and labeled with an anti-BrdU antibody (BD Bioscience) for

1 h. Then, cells were resuspended in washing buffer and labeled

with anti-mouse APC-conjugated antibody. Cells were then washed

and resuspended in PBS containing 5 mg/ml propidium iodide and

analyzed on a FACSAria flow cytometer using FlowJo software.

Transfections and infections

Transfection of pCDNA3-myogenin and pCDNA3-[control] plasmid

was mixed in Optimem with Lipofectamine reagent (Invitrogen) and

incubated with the cells for 5 h, according to the manufacturer’s

instruction.

For siRNA transfection in C2C12 cells, Dharmafect3 reagent was

mixed with 100 nM final concentration of siGenome Smart pool

collections Brg1 #L-041135, Brm #L-056591-00, cyclin D1 #M-

042441-01 and non-targeting pool #D-001810-10-20 (Dharmacon)

and incubated with the cells in culture medium following manufac-

turer’s protocol (Thermo Scientific). After 36 h from the onset of

transfection, growing medium (15% FBS) was replaced by differen-

tiation medium (2% horse serum + ITS) and cells were harvested at

GM, DM 18 h and DM 48 h for further analysis.

For retroviral infections, high-titered retroviral supernatants

(about 107 virus/ml) were generated by transient transfection of the

vectors in the helper-free packaging cell line Phoenix. Briefly, retro-

viral supernatant, undiluted or diluted in culture medium, were

mixed with Polybrene (final concentration 8 lg/ml) and incubated

with the cells at least for 5 h and cultured in Growth Medium for at

least 36 h before the induction of differentiation, where required.

Microarray analysis

For affimetrix analysis, the total RNA from duplicates of siRNA-

transfected cells was purified with TRIzol Reagent (Invitrogen) and

labeled cRNA was prepared from 500 ng RNA using the Illumina�

RNA Amplification Kit from Ambion (San Diego, USA). The labeled

cRNA (1,500 ng) was hybridized overnight at 58°C to the Sentrix�

MouseWG-6 Expression BeadChip (> 46,000 gene transcripts; Illu-

mina, San Diego, CA, USA) according to the manufacturer’s instruc-

tions. BeadChips were subsequently washed and developed with

fluorolink streptavidin Cy3 (GE Healthcare). BeadChips were

scanned with an Illumina BeadArray Reader. These genes were

analyzed for the presence of over-represented GO categories (Biolog-

ical Process) and GeneGo processes importing normalized data into

Ingenuity pathway software from GeneGo Inc. All RNA interference

experiments were performed in duplicate and only those genes with

a fold change of at least 1.3 present in duplicate experiments of

RNAi for Brm or Brg1 were considered. These genes were analyzed

for the presence of over-represented GO categories (Biological

Process) and GeneGo processes using Ingenuity pathway software.

The data discussed in this publication have been deposited in

NCBI’s Gene Expression Omnibus and are accessible through GEO

Series accession number GSE44993 (http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE44993).

qRT–PCR

Total RNA was extracted with TRIzol and retrotranscribed using the

Taqman reverse transcription kit (Applied Biosystems). Real-time

quantitative PCR was performed using Power SYBR Green Master

mix (Applied Biosystems) following manufacturer’s indications.
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Relative expressions were calculated by the comparative Ct method

for relative quantification using GAPDH (for SYBR Green) or B2

microglobulin (for TaqMan) as normalizing genes. Primers

sequences are listed in Table EV2.

Antibodies, immunoprecipitation, and Western blotting analysis

For Western blotting analysis, whole cell extracts were prepared in

a buffer containing 20 mM Hepes pH 7.9, 350 mM NaCl, 30 mM

MgCl2, 1 mM EDTA pH 8, 0.1 mM EGTA, 20% glycerol, 0.5%

NP-40 plus protease inhibitors 5 lg/ml. After lyses, protein concen-

trations were determined with Micro BCA Protein Assay Kit

(ThermoScientific). Fifty microgram of protein were fractioned by

SDS–PAGE, transferred to nitrocellulose membranes and incubated

overnight with the following antibodies: MyoD (BD Bioscience,

554130), Flag (M2, Sigma), sarcomeric actin (5C5,ZZ Biotechnol-

ogy), CDK4 (C-22, Santa Cruz Biotechnology), tubulin (H-300, Santa

Cruz Biotechnology), cyclin D1 (Millipore, 04-221), H3K27me3

(Active Motif, 39155), Brm (Abcam, 12165), Brg1 (H88 Santa Cruz

Biotechology, sc-10768), Actn3 (Origene, TA 303381), and mono-

clonal antibodies against myosin heavy chain (clone MF20) and

against myogenin (clone IF5D7/2).

Chromatin immunoprecipitation assay

ChIP assay was performed as previously described [56]. Primers

used for ChIP-DNA amplification are listed in Table EV2. The

antibodies used were as follows: anti-Brm (ab-15597, Abcam), anti-

Brg1 (sc-10768, H88), or normal IgG as control. Primers are listed in

Table EV2.

Animals and in vivo treatments

129/SvJ mice and 129/SvJ Brm null mice were obtained from

Jackson Laboratories and Scott Bultman, respectively. All proto-

cols were approved by the Sanford-Burnham Medical Research

Institute Animal Care and Use Committee. Experimental mice

used in our experiments were derived from breeding of Brm null

homozygous mice. To assess muscle regeneration, muscle injury

was performed by intramuscular injection of notexin (Sigma).

Ten microgram of notexin were injected in the right tibialis ante-

rior and in the right gastrocnemius. Left tibialis anterior and left

gastrocnemius were not injured and they were used as a control

(uninjured). Starting from the day of injury, 50 lg of EDU

(50 lg/g) were injected intraperitoneally twice a day for 6 days.

At day 6 post-injury, mice were euthanized and muscles were

collected for histology studies.

Immunofluorescence and histology

For immunofluorescence experiments, C2C12 myoblasts and satel-

lite cells were stained using standard protocol with the following

antibodies: anti-Brm (ab-15597); anti-Brg1 (sc-17796, G7); anti-

myosin heavy chain (MF20) 1:20; anti-Alpha-Actinin3 (EP2531Y,

Origene); cyclin D1 (04-221-clone EP272Y, Millipore). After incuba-

tion with conjugated secondary antibody (Alexa, Invitrogen), cells

were counterstained with 0.1 lg/ml 40,6-diamidino-2-phenilindole

(DAPI).

For histological analysis, tibialis anterior and gastrocnemius

muscles were snap-frozen in liquid nitrogen-cooled isopentane,

sectioned transversally at 10 lm, and stained for the following

primary antibodies: Laminin (L9393 Sigma) and Pax7 (Hybridoma

bank). Hematoxylin and eosin staining was additionally performed

to access muscle integrity.

BrdU and EDU labeling

5-bromo-20-deoxy-uridine (BrdU) labeling and detection kit (Roche)

was used according to the manufacturer’s instructions. BrdU label-

ing reagent was added to the cells with fresh media overnight. In

some experiments, the Click-iT EdU assay from Invitrogen was used

as an alternative to the BrdU assay, according to the manufacturer’s

directions. Similar to BrdU, EdU (5-ethynyl-20-deoxyuridine) is a

nucleoside analog of thymidine and is incorporated into DNA during

active DNA synthesis. EdU incubation was performed for 2–4 h.

BrDU and EDU immunohistochemistry was used to assay BrDU/

EDU incorporation.

Statistical analysis

Data are presented as mean � SEM unless otherwise indicated.

Differences between groups were analyzed for statistical significance

using the unpaired Student’s t-test with significance defined as

*P < 0.05, **P < 0.01, or ***P < 0.001, by performing at least three

independent experiments.

All experiments requiring the use of animals, directly or as a

source of cells, were subjected to randomization based on litter.

Investigators were not blinded to group allocation or outcome

assessment. Sample size was predetermined based on the variability

observed in preliminary and similar experiments. No samples or

animals were excluded from this study.

Expanded View for this article is available online:

http://embor.embopress.org
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